
NASA CASE NO.

PRINT FIG.

NOTICE

/

NPO-17632-1-CU

1

The invention disclosed in this document resulted from

research in aeronautical and space activities performed under

programs of the National Aeronautics and Space Administration. The

invention is owned by NASA and is, therefore, available for

licensing in accordance with the NASA Patent Licensing Regulation

(14 Code of Federal Regulations 1245.2).

To encourage commercial utilization of NASA-Owned inventions,

it is NASA policy to grant licenses to commercial concerns.

Although NASA encourages nonexclusive licensing to promote

competition and achieve the widest possible utilization, NASA will

consider the granting of a limited exclusive license, pursuant to

the NASA Patent Licensing Regulations, when such a license will

provide the necessary incentive to the licensee to achieve early

practical application of the invention.

Address inquiries and all applications for license for this

invention to NASA Patent Counsel, NASA Resident Office-JPL, Mail

Code 180-801, 4800 Oak Grove Drive, Pasadena, CA 91109.

Approved NASA forms for application for nonexclusive or

exclusive license are available from the above address.

Serial Number: 07/712,796

Filed Date: June i0, 1991

_ :_ I i i,:!_ ,[.._ _..

- ./_c:

NRO-JPL

5

Inventors:

Amir Fijany

Anta K. Bejczy
Contractor:

Jet Propulsion Laboratory

JPL Case No. 17632

NASA Case No. NPO-17632-I-CU

Date: April i0, 1991

i0

15

2O

25

HIGHLY PARALLEL COMPUTER ARCHITECTURE

FOR ROBOTIC COMPUTATION

AWARDS ABSTRACT

In a computer having a large number of single-

instruction multiple data (SIMD) processors, each of the

SIMD processors has two sets of three individual

processor elements controlled by a master control unit

and interconnected among a plurality of register file

units where data is stored. The register files input and

output data in synchronism with a minor cycle clock under

control of two slave control units controlling the

register file units connected to respective ones of the

two sets of processor elements. Depending upon which

ones of the register file units are enabled to store or

transmit data during a particular minor clock cycle, the

processor elements within an SIMD processor are connected

in rings or in pipeline arrays, and may exchange data

with the internal bus or with neighboring SIMD processors

through interface units controlled by respective ones of

the two slave control units.

Seri3; r,-b , _3,

I :.:. . 6-,,6- '

i [_..:__: t.._
9] 9,3

JPL Case No. 17632

NASA Case No. NPO-17632-I-CU

Attorney Docket No. JPL89-013

HIGHLY PARALLEL COMP_

,PATENT 'APPLidATION

C'. _,- .,J" d, -,[!i'_:L I

1F:_;: • .::;._ C,,. 9!109 ._

FOR ROBOTIC COMPUTATION

BACKGROUND OF THE INVENTION

5

Oriqin of the Invention:

The invention described herein was made in the

performance of work under a NASA contract, and is subject

to the provisions of Public Law 96-517 (35 USC 202) in

which the Contractor has elected not to retain title.

i0

15

Technical Field:

The invention is related to computers for use

robotics in which most computations involve vectors in

Euclidian space and transformation matrices therefore.

In particular, the invention is related to computers

whose architecture is reconfigurable among a plurality of

processor elements.

2O

Backqround of the Invention:

Two classes of computation-intensive problems can be

distinguished in robotics applications. The first

comprises the rather specific kinematics and dynamics

problems required for real-time control, simulation,

dynamic trajectory generation and path planning.

25

30

Inadequate computing power has always been the major

obstacle in real-time implementation of advanced robotic

schemes, due to the computational cost of the evaluation

of required kinematic and dynamic models. Dynamic

simulation of the robot arm requires even more computing

power than does control. The problem becomes more

difficult for direct-drive arms, representing even faster

dynamics, and for redundant and multiple arms, which

5

involve more degrees of freedom. Fast dynamic

trajectory generation and path planning demand even far

more computing power. It is widely recognized that

parallel computing is the key to achieving required

computing power for real-time robotic control and

simulation.

i0

15

The second class comprises more generic problems

which require even more computation power. This second

class of problems includes, for example, low level image

processing, graphics display, tactile sensory processing,

singular value decomposition for inverse kinematic
solution of redundant arms. Therefore, computer designs

for robotic application should address these two

different classes of problems.

20

25

The first need is to develop a highly parallel

architecture for a class of specific problems in

robotics, namely kinematics and dynamics. The second

need is to address the second class of problems, which

require more generality and flexibility while preserving

the high performance which existing parallel

architectures fail to address adequately. The common

features of the problems in this class are determinacy in

the computing locality for communication, and the

existence of fine grain parallelism.

3O

35

Theoretical analyses have shown that systolic and

wave front processor arrays can be used efficiently for a

wide class of problems with the above-listed properties.

The main advantage of systolic and wave front arrays is

their capability of combining pipeline and parallel

processing. This is an important feature, since in many

problems pipelining presents the only opportunity of

concurrent processing. Another advantages of these

2

5

systolic and wave front arrays is their ability to

overlap the input/output operations and computation.

However, two main problems arise in practical

implementation of systolic and wave front processor

arrays:

i0

15

i) The gap between memory and processor

speed: Performance analysis of systolic and wave front

arrays is based on the assumptions that parallel memory

modules are available, that data are already aligned, and

that data can be fed into the array with adequate speed.

In practice, satisfying these assumptions, particularly

for large and two-dimensional arrays, is difficult, and

the resulting overhead can undermine performance. Note

that these architectures are basically attached

processors, and data are provided by a host processor.

Therefore, data are basically provided in serial form.

2O

25

3O

35

2) Rigidity: In systolic arrays, unless the

individual cells are programmable, maximum flexibility

cannot be achieved. Lack of reconfigurability in the

interconnect structure among the cells is another source

of rigidity, since achieving maximum efficiency for

different problems requires the capability of providing

different interconnection structures. However, due to

practical problems such as clock distribution, even for

arrays with static interconnections, practical

implementations have been confined to one-dimensional

arrays.

It is an object of the invention to implement an

architecture capable of achieving the efficiency and

generality of systolic arrays, by overcoming the

foregoing difficulties.

3

5

I0

15

2O

25

3O

35

DISCLOSUREOF THE INVENTION

The invention is a computer having a highly parallel

architecture which includes an internal host computer

controlling user interfaces and connected through an

internal bus to a large number of single-instruction

multiple data (SIMD) processors. In the preferred

embodiment of the invention, each of the SIMD processors

has two sets of three individual processor elements

controlled by a master control unit and interconnected

among a plurality of register file units where data is

stored. The register files input and output data in

synchronism with a minor cycle clock under control of two

slave control units controlling the register file units

connected to respective ones of the two sets of processor

elements. Depending upon which ones of the register file

units are enabled to store or transmit data during a

particular minor clock cycle, the processor elements

within an SIMD processor are connected in rings or in

pipeline arrays, and may exchange data with the internal

bus or with neighboring SIMD processors through interface

units controlled by respective ones of the two slave

control units. Arithmetic operations are performed by

the processor elements in synchronism with a major cycle

clock under control of a master control unit. The master

control unit also controls a multiplexer connected

between the two sets of three processor elements. The

multiplexer can isolate the two sets of processor

elements or connect them together in a long ring of six

processor elements.

For certain types of kinematic or dynamic

computations, data flow through the register file units

is controlled by the slave control units so that the

three processor elements of each set operate together in

a ring (or in parallel) to perform three-dimensional

4

5

vector arithmetic, or the six processors of both sets

operate in parallel together to perform three-dimensional

matrix multiplication. In this mode, each processor

would handle one component of a three-component vector

and perform the same type of arithmetic operation

repetitively. This exploits the concurrency such vector

operations to the greatest extent possible.

I0

15

2O

25

30

For other types of instructions, data flow through

the register file units and through the multiplexer is

controlled by the slave control units and the master

control unit, respectively, in a different manner so that

the processor elements operate in pipeline fashion and

receive and communicate results with adjacent SIMD

processors, rather than with the internal bus. Thus, the

whole set of SIMD processors can be configured to operate

as a pipeline array of processor elements. In one

embodiment of this configuration, one of the three sets

of processor elements in each SIMD processor processes

data received from its /eft-hand neighbor SIMD processor

and passes the results to its right-hand neighbor, while

the other set of three processor elements processes data

received from its right-hand neighbor SIMD processor and

passes the results to its left-hand neighbor. This

provides simultaneous bi-directional data communication

among the processor elements. If the data flow is all in

one direction, then the two groups of processor elements

in each SIMD processor may operate as two successive

stages of a pipeline processor. If there are n SIMD

processors in the computer, then the pipeline

configuration may be used as a 2n stage pipe or as two

pipes each with n stages.

35

How the control units choose to reconfigure or route

data flow within an SIMD processor depends upon the type

5

L

5

of instruction which is to be performed during the next

major clock cycle. The master control unit determines

from the type of instruction to be performed during the

next major clock cycle which type of configuration would

be best suited to the particular instruction.

i0

Pipelining and parallel or ring processing can be

achieved simultaneously on two different levels by

pipelining the successive SIMD processors through the

interface units connecting adjacent SIMD processors,

while within each SIMD processor connecting the two sets

of processor elements in rings (to perform vector

operations, for example, as discussed above).

15

2O

25

3O

35

The flexibility which permits the computer to change

at each major clock cycle from one to another of any of

the foregoing configurations provides the possibility of

developing a wide variety of algorithms to cope with

different problems.

Synergism is also employed in the interconnection

topology. The basic interconnection among the processor

elements in an SIMD processor is a ring, which allows a

reliable clock distribution among processor elements and

particularly fast a parallel communication between the

adjacent SIMD processors. The lack of higher dimensional

connectivity has been compensated by two features.

First, the memory organization and extensive data path of

each processor allows different interconnection among the

processing elements. Secondly, the speed of

communication between processors allows efficient and

dynamic establishment of different topologies among the

processor elements of adjacent SIMD processors. (In

other words, adjacent SIMD processors can be configured

differently during a given major clock cycle.) Hence,

6

the architecture can emulate, under program control,

different two-dimensional topologies among the processor

elements, such as mesh topologies, for example.

5

I0

15

2O

The high programmability of the architecture of the

invention contributes to the overall generality of the

computer, providing adaptability to a wide class of

problems. It provides an efficient solution to the

problem of variations in cardinality (the difference

between the number of processes and the number of

processors) and topologies (as described above). Failure

to provide for such variations has been the main source

of rigidity and inefficiency of SIMD architectures such

as systolic and wave front arrays of the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiment of the invention are described

in detail below with reference to the accompanying

drawings, of which:

Fig. 1 is a block diagram of the highly parallel

architecture computer of the invention;

25
Fig. 2 is a block diagram of a typical SIMD

processor employed in the computer of Fig. I;

30

Fig. 3 is a simplified block diagram illustrating a

typical processor element employed in the SIMD processor

of Fig. 2;

Fig. 4 is a simplified block diagram of a typical

register file unit employed in the SIMD processor of Fig.

2;

7

Fig. 5 is a simplified block diagram of a typical

latch employed in the SIMD processor of Fig. 2;

Fig.'s 6a and 6b are contemporaneous simplified

timing diagrams illustrating a major clock cycle signal

and a minor clock cycle signal, respectively, employed in

the SIMD processor Fig. 2;

i0

Fig. 7 illustrates a double ring architecture of the

SIMD processor of Fig. 2;

Fig. 8 illustrates a single ring structure of the

SIMD processor of Fig. 2;

15 Fig. 9 illustrates a fully parallel architecture of

the SIMD processor Fig. 2;

20

Fig. i0 illustrates a pipeline architecture of the

SIMD processor of Fig. 2; and

Fig. ii illustrates a bi-directional pipeline

architecture of the SIMD processor of Fig. 2.

25

3O

35

MODESFOR CARRYINGOUT THE INVENTION

For the purpose of interfacing to the outside world, the

architecture is basically an attached processor which can

be interfaced to the bus of an external host as a part of

the bus memory. The external host can be any stand alone

computer or a multiprocessor bus oriented system. The

data and instructions, from the external host, and the

results and the state of each instruction, from

architecture, are communicated through a dual access

shared memory. The architecture is activated by a

procedure call from the external host, performed by a

write operation in a designated address, which is

8

5

interpreted as an interrupt by the architecture. The

memory mapping of the architecture provides maximum speed

and flexibility since the data transfer rate is limited

by the read/write cycle of the external host. A bus

adapter provides the required interface for different

external buses.

i0

15

2O

25

30

35

System Overview:

Referring to Fig. I, an internal host I00 and a

large number n of SIMD processors (cells) 102 are

connected to an internal bus 104. The internal host i00

is the basic control unit and handles data and control

interfacing with an external host 106 and its external

bus 108 through a bus adapter ii0, controls the

activities of the cells 102 and performs the required

input/output (I/O) operations. The internal host i00

also performs any serial or data dependent computations

which realize little or no advantage in a parallel

architecture. The parallel computations are performed by

the ensemble of cells 102. Each cell 102 is an SIMD

parallel processor which can operate synchronously.

Therefore, the system of Fig. 1 may be considered as an

multiple instruction-multiple data (MIMD)-SIMD parallel

computer.

Host Architecture:

The internal host i00 consists of a 32 bit general

purpose processor 112, an arithmetic co-processor 114 and

a bus memory 116. The internal host I00 controls the

system of Fig. 1 by interpreting instructions received

from the external host 106. The internal host i00

decomposes the instructions into a series of computations

to be performed by the host i00 itself (e.g., serial

computations) and parallel computations to be performed

by the cells 102. Depending upon the computation, the

I0

15

2O

25

internal host I00 distributes the data among the cells

102 and initiates their activities. The activity of the

cells 102 is then carries out independently from the host

I00. The end of the computation is indicated by the

cells 102 to the host i00, which then transfers the

results to the bus memory 116, for access by the external

host 106. The internal host I00 also reports the state

of the operation, namely "busy" and "finished", to the

external host 106.

The internal host i00 employs the arithmetic co-

processor 114 in carrying out the serial or data

dependent computations. The co-processor 114 can

function either as a co-processor or as an attached

processor. In its co-processor mode, the data are

fetched by the internal host processor i00 while

arithmetic operations (multiplication, addition,

conversion, etc.) are performed by the co-processor 114.

These arithmetic operations are transparent to the

internal host processor I00 both from programming and

timing points of view. This feature provides the maximum

speed since the computation time is only bounded by the

read/write cycle of the internal host i00. For other

operations (division, square root, trigonometric

functions, etc.), the co-processor functions 114 as an

attached microprogrammable processor.

3O

35

The Cell Architecture

The SIMD processors or cells 102 are arranged in a

linear order and each is connected to the internal bus

104 as well as being connected to the adjacent SIMD

processor to its left and to its right, as shown in Fig.

i. Each SIMD processor 102 has the structure illustrated

in Fig. 2.

i0

5

i0

Processor Elements:

In the preferred embodiment, there are six processor

elements 116, each of which is a simple floating-point

processor capable of performing primitive operations such

as multiplication, addition, subtraction, format

conversion, etc. Each processor element 116 has a 3-bus

architecture with internal data paths allowing

accumulative operations such as sum-of-product and

Newton-Raphson division, in accordance with well-known

techniques.

15

2O

25

30

There are two processor element groups 118, 120 each

containing three of the processor elements 116. As will

be described in the next section below, the connections

among the processor elements 116 may be reconfigured as

desired, in accordance with the type of operation to be

performed. In solving kinematic and dynamic problems,

the two groups 118, 120 are separated to perform two

basic matrix-vector operations in parallel while each

group 118, 120 exploits the parallelism in the operation.

Also, each group 118, 120 can be considered as an

independent SIMD processor or a pipeline stage, providing

the possibility of decomposing the architecture into two

independent MIMD-SIMD processors or two n-stage pipeline

processors. Otherwise, the processor elements 116 of

each group 118, 120 can perform independent but similar

operations. In the preferred embodiment illustrated in

Fig. 2, the processor elements 116 within a group 118 or

120 share the same instruction. For matrix-matrix

multiplication, the two groups 118, 120 are connected

together to perform as a single group. The direct data

path among the processor elements 116 within each group

allows a linear interconnection among them.

35

ii

5

i0

Interconnection Elements:

Data flow and interconnection among the various

processor elements 116 of the two groups 118, 120 is

handled by a set of register file units 122 - 132 and

latches 134 - 144. Data flow with adjacent SIMD

processors 102 (see Fig. I) is handled by right and left

interface units 146, 148. There are a number of data

path configurations which may be selected with these

interconnection elements, as illustrated in Fig. 2 and

which will now be described.

15

20

25

30

35

Data flow from the internal host i00 via the

internal bus 104 (Fig. i) goes through a host interface

150 (Fig. 2) and the register file unit 122, and can be

stored in a random access memory 152. Respective data

outputs of the register file unit 122 are connected to

first data inputs of the right and left register file

units 126 and 128. The right and left register file

units 126, 128 each have three data outputs connected

respectively to the first data inputs of the three

processor elements 116 of each group 118, 120. A fourth

data output of each of the right and left register file

units 126, 128 is connected to the host interface 150 for

data output to the host I00. Each processor element 116

has a second data input connected through a latch (e.g.

134) to the first data input of the same processor

element 116. Data outputs of the right and left

interface units 146, 148 are connected to data inputs of

the register file unit 124. The register file unit 124

has data outputs connected to the first data inputs of

the right and left register file units 126, 128. Each of

the output register file units 130, 132 has three data

inputs each connected to the data output of a processor

element 116 in a corresponding one of the two groups 118,

120. Each of the output register file units has two data

12

outputs connected to the first data inputs of the right

and left register file units 126, 128.

5

i0

15

20

25

Each of the data outputs of the right and left

register file units 126, 128 connected to the "in-board"

processor elements l16a, l16b of the respective groups

118, 120 are also connected to a second data input of the

other one of the right and left register file units 126,

128, providing an "in-board" connection between the two

groups 118, 120. An "outboard" connection between the

two groups 118, 120 is provided through a multiplexer

154. The multiplexer 154 has a first data input and a

first data output connected respectively to the data

output and second data input of the "in-board" processor

elements l16b and l16a of the left and right groups 120,

118, respectively. The multiplexer 154 also has a second

data output and a second data input connected to the

second data input and the data to the data outputs of the

"outboard" processor elements i16c and l16d of the left

and right groups 120, 118, respectively. The data output

of the right and left register file units 126, 128 which

is connected to the outboard processor l16d, i16c is also

connected to the data input of the right and left

interface unit 146, 148, respectively, thus providing an

external "outboard" connection to adjacent SIMD

processors 102.

3O

The multiplexer can establish a ring topology for

each group 118, 120, or a ring topology among all six

processor elements 116 or a linear (pipeline) topology

among all processor elements 116. The latter

configuration transforms the entire SIMD processor 102 of

Fig. 2 to a pipeline processor with six uniform stages.

13

5

i0

Right and left look-up tables 156 have data inputs

and outputs connected across the second data inputs and

data outputs of the right and left "outboard" processor

elements l16d, i16c. Other look-up tables may be

similarly connected across the other processor elements

116 of Fig. 2. The look-up tables 156 provide the seed

values for initiating the division operations by Newton-

Raphson methods, in accordance with well-known

techniques. This feature allows the processor elements

116 to perform several divisions in parallel.

15

2O

25

30

The data inputs, data outputs and control inputs of

a typical processor element 116 are illustrated in Fig.

3. Typically, there are the first and second data inputs

160a, 160b, controlled by respective READ1 and READ2

enable inputs 162a, 162b, and a data output 164

controlled by an OUTPUTenable input 166. The processor

element has a major clock input 168 with which it

synchronizes it arithmetic operations.

The data inputs, data outputs and control inputs of

a typical one of the register file units 122 - 132 are

illustrated in Fig. 4. Different register file units

have different numbers of data inputs and data outputs,

as illustrated in Fig. 2. Fig. 4 illustrates a generic

register file unit having three data inputs 170a - 170c

and four data outputs 172a - 172d, not all of which need

be used. Each data input 170 is controlled by a

respective READ enable input 174a - 174c while each data

output 172 is controlled by a respective DATA OUT enable

input 176a - 176d. A minor clock input 178 synchronizes

the operation of the register file unit.

14

Fig. 5 illustrates a typical one of the latches 153,

which has a data input 180 and a data output 182 which

are synchronized with a minor clock input 184.

5

i0

15

20

25

30

35

Control Units:

The SIMD processor 102 of Fig. 2 is controlled by a

master control unit 186 and right and left slave control

units 188, 190, respectively, which are subservient to

the master control unit 186, and which are associated

with the right and left processor element groups 118,

120, respectively. There are two control clock cycles,

namely a major clock cycle and a minor clock cycle whose

frequency is twice the major clock cycle in the preferred

embodiment. The clock signals controlling the major and

minor clock cycles are illustrated in Fig.'s 6a and 6b,

respectively. The master control unit 186 issues

microinstructions in synchronism with the major clock

cycle while the slave control units 188, 190 issue

nanoinstructions in synchronism with the minor clock

cycle. The nanoinstructions determine the type of data

movements (fetch, store and routing) performed by the

processor elements 102. Each slave control unit 188, 190

controls three processor elements in a respective one of

the right and left processor element groups 118, 120, and

therefore is capable of initiating three data movements

during any one minor clock cycle, namely three read,

three write or any combination thereof. Each

microinstruction issued by the master control unit 186

contains two sets of instructions, one for each of the

two processor element groups 118, 120. The master

control unit 186 performs global control and

synchronization. The master control unit 186 also

controls the multiplexer 154 and can reconfigure the

connections between the inputs and outputs of the

multiplexer 154 once each major clock cycle.

15

5

Specifically, each one of the two data inputs of the

multiplexer 154 may be connected to either one of the two

data outputs thereof, or may be left unconnected. Once

each major clock cycle, each processor element 116

executes the instruction which the master control unit

186 has issued to the corresponding processor element

group 118 or 120.

I0

15

2O

The control inputs 162, 166 of each processor

element 116 illustrated in Fig. 3 and the control inputs

172, 176 of each register file unit illustrated in Fig. 4

are separately controlled by a respective one of the

right and left slave control units 188, 190. The right

slave control unit 188 controls the control inputs of

processor elements 116 and the register file units 126,

128 in the right processor element group 118 as well as

the data outputs of the register file units 122, 124

connected to the right register file unit 126, while the

left slave control unit 190 controls the control inputs

of the processor elements 116 and the register file units

128, 132 in the left processor element group 120 as well

as the data outputs of the register file units 122, 124

connected to the left register file unit 128.

25

3O

35

The key to programmable reconfigurability of the

data flow in the SIMD processor 102 of Fig. 2 is that

during any minor clock cycle, the slave control units can

enable or disable any of the data inputs or data outputs

under their respective control. As a very simple

example, consider how the processor element i16c of Fig.

2 (see also Fig. 3) receives and multiplies two numbers a

and b in one major clock cycle. Referring to Fig.'s 6a

and 6b, at time t I during the second minor cycle of a
preceding major clock cycle, the register file unit 128

transmits the number a to the latch 153 and to the first

16

5

i0

15

data input of the processor element i16c. The first data

input is not enabled at this time, but the number a is

stored in the latch until the next minor clock cycle.

During the next minor clock cycle at time t 2 of Fig.'s 6a
and b, the register file unit 128 transmits the number b

to the latch and the first data input of the processor

element i16c. At this time, both data inputs of the

processor element i16c are enabled, so that the first

data input receives the number b directly from the

register file unit 128, while the second data input

receives the number a from the latch 153. During the

next major clock cycle, which happens to coincide with

time t2, the processor element i16c receives a
microinstruction causing it to multiply the numbers a and
b.

2O

25

3O

35

The organization of the control units 186, 188 and

190 as well as time multiplexing described above fills

the gap between the memory and processor speeds. Data

can be fetched and aligned with the adequate speed to

sustain the peak performance of the processor elements

116. It also allows overlapping of the read and write

operations and computation while reducing the microcode

complexity. This decentralized control is also required

for reconfigurability, since each processor element group

118, 120 can operate as an independent SIMD processor or

pipeline processor with a separate instruction issued by

the master control unit 186. Unlike SIMD processors of

the prior art, the master control unit 186 synchronizes

the whole architecture of Fig. 2 at two levels: (i) a

primitive operation level where the processor elements

116 within a group are synchronized and (2) a basic

operation level where both groups 118, 120 of processor

elements are synchronized together. In the latter case,

if the two processor element groups 118, 120 are operated

17

as a single SIMD processor or as a single pipeline

processor, the master control unit 186 applies a global

synchronization to all processor elements.

5

I0

Memory Organization and Proqrammable Data Paths:

Fig. 7 illustrated the dual ring structure achieved

by the slave units 188, 190 activating the connections

between the output of each processor element 116 within a

group and the second data input its neighbor to the

right. As mentioned previously herein, such a

configuration is useful for performing two matrix-vector

operations simultaneously, one operation within each of

the groups 118, 120.

15

2O

Fig. 8 illustrates the modification to the

configuration of Fig. 7 in which the master control unit

186 enables the left-hand data input and the right-hand

data output of the multiplexer 154, to achieve a single

ring structure. As mentioned previously here, such a

configuration is useful for performing matrix-matrix

multiplication.

25

Fig. 9 illustrates that each of the six processing

elements may be operated simultaneously and independently

if desired, by enabling the direct input and output

connections provided by the left and right input register

file units 126, 128 and the left and right output

register file units 130, 132.

3O

35

Fig. I0 illustrates the result achieved by enabling

the left data input to the interface register file unit

and the data output from the right register file unit 126

to the right interface unit 146 while connecting the "in-

board" processor elements l16a, l16b through the

multiplexer 154. This configuration is a single pipeline

18

processor which, if repeated in all SIMD processors 102

in the system of Fig. I, extends through a maximum number

of stages.

i0

15

Fig. ii illustrates a bi-directional pipeline

processor achieved by modifying the connections in the

configuration of Fig. i0 so that data flows from the

output of the left interface unit 148 to the "outboard"

processor element i16c of the left processor element

group 120 and from the "inboard" processor element of the

same group to the data input of the right interface unit

146, while data flows from the output of the right

interface unit 146 to the "inboard" processor element

l16a of the right group 118 and form the "outboard"

processor element of the same group to the input of the

left interface unit 148 through appropriate ones of the

register file units.

2O

25

Many other variations and permutations of the

foregoing configurations may be achieved by the skilled

worker in accordance with the data path controls

illustrated in Fig.'s 2 through 4 by causing the slave

units to enable or disable various data inputs and

outputs of the register file units and of the processor

elements, and need not be specifically described herein.

3O

35

The architecture of Fig. 2 includes a hierarchical

memory organization. Data are classified hierarchically

as passive, active, operating and resulting. Passive

data reside in the random access memory 152. Passive

data consist of the constant data required in the

computation of robot link parameters and the like, as

well as the final results of computations to be

transmitted to the host i00. Alternatively, the host i00

can read the final results directly from the right and

19

5

I0

15

2O

25

3O

left register file units 126, 128. Those constants which

are required for actual computation are transferred to

the input register file 122 during initialization or

background time, which then become active data. The

active data reside in the two input register file units

122, 124 and consist of data provided by the host i00 or

by neighboring SIMD processors 102, and the constants

required for computation. The basic feature of active

data is that each data item can be fetched simultaneously

and independently by both slave control units 188, 190

and transferred to the right and left register file units

126, 128, such data then being classified as operating

data. The operating data reside in the right and left

register file units 126, 128 and consist of the data

which are fetched and aligned for the processor elements

116. The basic feature of operating data is that each

data item can exist in both the right and left register

file units 126, 128 and can be used by both processor

element groups 118, 120 simultaneously. Furthermore, an

operating data item can be simultaneously fetched for

different processor elements 116. This feature is

essential for exploiting parallelism in matrix-vector

operations. The resulting data reside in the output

register file units 130, 132 and represent the results of

processor element operations. Like the active data, they

can be simultaneously fetched by the two slave control

units 188, 190 and transferred to the input right and

left register file units 126, 128 to become operating

data. At each minor cycle, three data items can be read

from each of the right and left register file units 126,

128. Also, at each minor cycle, three data items can be

written into each of the output left and right register

file units 130, 132.

20

5

i0

The foregoing memory organization provides the

maximum flexibility for parallel computation,

particularly for kinematic and dynamic computations. A

data item can exist at different physical addresses,

which allows simultaneous parallel operations on the same

data item. Furthermore, data can be routed efficiently

among the processing elements 116 and register file

units. More importantly, there is parallelism in read

and write operations and these read and write operations

may be overlapped with the computation operations.

15

While the invention has been described in connection

with a preferred embodiment in which the number of

processor elements 116 in each group 118, 120 is a

multiple of three and in which there are two groups, any

number of processor elements 116 per group may be

selected and any number of groups may be used within a

single SIMD processor 102.

20 While the invention has been described in detail by

specific reference to preferred embodiments thereof, it

is understood that variations and modifications thereof

may be made without departing from the true spirit and

scope of the invention.

21

HIGHLY PARALLEL COMPUTER ARCHITECTURE

FOR ROBOTIC COMPUTATION

5

i0

15

2O

ABSTRACT OF THE INVENTION

In a computer having a large number of single-

instruction multiple data (SIMD) processors, each of the

SIMD processors has two sets of three individual

processor elements controlled by a master control unit

and interconnected among a plurality of register file

units where data is stored. The register files input and

output data in synchronism with a minor cycle clock under

control of two slave control units controlling the

register file units connected to respective ones of the

two sets of processor elements. Depending upon which

ones of the register file units are enabled to store or

transmit data during a particular minor clock cycle, the

processor elements within an SIMD processor are connected

in rings or in pipeline arrays, and may exchange data

with the internal bus or with neighboring SIMD processors

through interface units controlled by respective ones of

the two slave control units.

/J_O 17 _ % "_-I- <LL_

o
qD
o

n_ j
ILl

D

d

o I- L, b) -_I -(_

0
U')

L,--

_0

&

i

Ld

}-.
Z

C_ _-

LI.I

n,'
l.d

m

¢0
O4

n_

O0
c'4-

Ld
_J

¢0

0

O0

¢0
U_

mmm_

¢0
u_

¢0

0
¢0

O4
to)

¢X)
GO

0

DATA 2 DATA 1

160b---_ I I j-160a
READ 2 / F READ 1

ENABLE _ ENABLE

162b -J I pl_np..r_nR I _- 162a

OUTP .T --164 L168
ENABLE) • - "

_-166 DATA OUT

READ A
ENABLE

172

DATA OUT D REGISTER
RLE

DATA OUT D
ENABLE

176d

DATA OUT A
ENABLE

DATA OUT B 176¢ /
|

/ENABLE
176 b -'j "

174¢J DATA
OUT

A

FIG.

172e

174¢

174b

18o- 5

MINOR _> LATCH ICLOCK --
184-

't-182

DATA OUT

READ C
ENABLE

78

MINOR
CLOCK

DATA OUT C
ENABLE

DATA OUT C

DATA OUT e

DATA IN

MAJORFIG. 6,, c_oc__3 I I

MINOR
FIG. 6b cLOCK

__tt2

FIG. 7

FIG. 8

FIG. 9 ______

000

